
A constitutive model in viscoelastoplasticity of glassy polymers

Aleksey D. Drozdov*

Institute for Industrial Mathematics, 4 Hanachtom Street, Beersheba 84249, Israel

Received 30 March 1998; received in revised form 1 July 1998; accepted 4 August 1998

Abstract

Constitutive equations are derived for the viscoelastoplastic response of glassy polymers under isothermal loading. The model is based on
a concept of adaptive links (a version of the theory of temporary networks), where active chains are modeled as elastoplastic elements.
Breakage and reformation of adaptive links reflect the viscoelastic behavior, whereas irreversible deformations of links are responsible for
plastic effects. Stress–strain relations in finite viscoelastoplasticity are developed with the use of the laws of thermodynamics. These
relationships are essentially simplified at small strains, when geometrical and physical nonlinearities are neglected. The model is applied
to the analysis of uniaxial extension of a viscoelastoplastic bar. Fair agreement is demonstrated between experimental data for polycarbonate
and poly(methyl methacrylate) at elevated temperatures and results of numerical simulation.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The paper is concerned with the viscoelastic and visco-
plastic behavior of glassy polymers at finite and small
strains. Our objective is to derive stress–strain relations
which adequately reflect the physical picture of deforma-
tion, on the one hand, and which are rather simple to calcu-
late stresses in polymeric articles with complicated
geometry, on the other.

Constitutive equations in viscoelastoplasticity of poly-
mers have attracted attention in the past three decades
because of their applications in polymer engineering [1].
Despite a number of publications on this subject, it is diffi-
cult to mention a model which correctly describes observa-
tions under arbitrary nonmonotonic loading.

Following common practice, plasticity is thought of as
the stress-activated nucleation of ‘mobile units’ and their
diffusion from one position of local equilibrium to another
over an energy barrier [2]. The resistance of a polymer to
plastic flow is explained by intermolecular barriers to rota-
tion of chain segments [3]. To surmount a potential barrier,
a chain should acquire some energy which is determined by
the current ‘effective’ stress. The rate of plastic strains is
determined by the Eyring theory [4] of thermally activated
inelastic processes.

Robertson [5] explicitly calculated the rate of plastic flow

based on the presentation of a long chain as a sequence of
segments with two stable rotational conformations (trans
andcis).

To model viscoplastic deformations, Haward and Thack-
ray [6] employed an Eyring dashpot connected in parallel
with a Langevin spring (to give a reason for recoverable
stresses) and in series with a Hookean spring (to take
account of a finite instantaneous elastic modulus).

Argon [7] derived constitutive relations in viscoplasticity
of glassy polymers based on an empirical formula for the
activation energy. His model was discussed and generalized
in several studies [8–12].

The concept of absolute reaction rates is restricted to
relatively low temperatures [13]. Its extension to a region
in the vicinity of the rubber–glass transition has been
carried out by Ree and Eyring [14].

Bauwens-Crowet and coauthors [13,15,16] derived
stress–strain relations for glassy polymers based on the
Ree–Eyring theory with two stages of plastic flow (corre-
sponding toa andb relaxation processes). Fotheringham
and Cherry [2] described yield of glassy polymers by using a
model withn activated rate processes, wheren is an arbi-
trary integer. With the growth ofn, their model turns into a
model of cooperative relaxation [17].

G’Sell and Jonas [18] treated plastic deformation as
propagation of linear molecular misfits (the so-called plastic
waves) and calculated the rate of plastic strains as a product
of three parameters (the mean velocity of a plastic wave, the
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wave density, and an analog of the Burgers vector), which
change in time in accordance with the Eyring theory.

Analogous constitutive equations were proposed in Refs.
[19–21], where inelastic deformations of glassy polymers
were thought of as nucleation and propagation of mobile
defects. The rate of plastic flow was given by a relationship
similar to the Eyring formula (thermally activated glide
process), where the energy of activation was determined
by the difference between the current stress and some inter-
nal stress (arising because of long-range interaction between
plastic defects).

The stress–strain relations in the model of plastic defects
are close to those developed in the viscoplasticity theory
based on the overstress concept [22,23].

A yield-like response in tensile tests with constant rates of
strains (the presence of a local maximum on the stress–
strain curve, apparent softening immediately after the
yield point, and hardening at relatively large strains) has
been described in Refs. [24–27] in the framework of
nonlinear viscoelasticity with a mechanically induced inter-
nal clock.

To describe the viscoelastoplastic behavior of glassy
polymers, the present study employs a concept of temporary
networks [28–31] in the version of a model of adaptive links
[27,32–37]. Below the glass transition temperature, the
contribution of the configurational entropy of long chains
into the free energy of a network is neglected, and a poly-
meric material is modeled as a network of physical and
chemical crosslinks connected to temporary junctions.
Any crosslink is thought of as a spring (link) possessing
some mechanical energy of deformations. Unlike previous
studies [27,32–37] where adaptive links are treated as
linear or nonlinear elastic elements, we model a link as an
elastoplastic element under time-varying uniaxial tension
(compression). Breakage and reformation of adaptive links
in a temporary network reflect the viscoelastic effects in the
bulk material, whereas irreversible deformations of indivi-
dual links are responsible for the plastic effects observed at
the macro-level. A constitutive model in viscoplasticity of
glassy polymers, where the breakage process was incorpo-
rated with the plastic flow (but without reformation of
dangling chains) has been recently proposed by Tomita
and Tanaka [38].

The exposition is organized as follows. First, we intro-
duce a model of adaptive links and develop governing equa-
tions for the numbers of links of various kinds in a
temporary network. Then we calculate the potential energy
of an individual chain and the strain energy density of a
network. The latter expression is employed to introduce
thermodynamic potentials of a transient network. We
apply these potentials to derive constitutive equations for
a viscoelastoplastic medium at finite strains using the laws
of thermodynamics. The resulting equations are essentially
nonlinear, and their employment at finite strains requires
numerical simulation. The stress–strain relations are signif-
icantly simplified at small strains. To find adjustable para-

meters of the model and to verify the constitutive relations,
we use experimental data for polycarbonate and rubber-
toughened poly(methyl methacrylate). It is demonstrated
that the model provides fair agreement between observa-
tions and results of numerical analysis.

2. A model of adaptive links

Conventional network theories [28–31] treat a polymer
as a system of active chains connected to junctions. A chain
is defined as a sequence of monomers between two adjacent
crosslinks or entanglements. The points of linking (junc-
tions) are assumed to be frozen in the bulk material (an
affinity hypothesis [39]). This picture correctly describes
the response of polymeric melts and solutions at elevated
temperature, when the free energy of crosslinks and entan-
glements is negligible compared to the free energy of long
chains. Since the average number of monomers in a long
chain is large, the contribution of its mechanical energy into
the free energy is small compared to that of the configura-
tional entropy, and the entropic elasticity determines ther-
modynamic potentials of a network.

Below the glass transition temperature, the average length
of a chain crucially decreases because of the growth in the
number of entanglements. This entails a decrease in the
configurational entropy of long chains and an increase in
the mechanical energy of physical and chemical crosslinks
and entanglements (adaptive links) [40,41]. The contribu-
tion of the configurational entropy of long chains into the
free energy of a network becomes insignificant, whereas the
effect of the potential energy of links becomes dominant
(see Refs. [27,35–37]).

To predict the viscoelastic response of a polymer, we
assume thatM kinds of links exist that break and reform.
Different kinds of links reflect interactions between long
chains with different length scales. Their interrelations in
an entangled polymer (when a chain suffers microstrains
driven by mechanical factors with different characteristic
lengths) result in a continuous spectrum of relaxation
times typical of viscoelastic media. A continuous spectrum
is conventionally matched by a discrete spectrum, the
numberM of whose elements is chosen to ensure an accep-
table level of accuracy in fitting experimental data.
Formally, this value may be determined based on the physi-
cal picture of interactions, when adaptive links of various
kinds correspond to forces with the length scale of a mono-
mer, an entanglement, a strand, a coil, etc. However, the
simplest way is to treatM as an adjustable parameter that
determines the number of points in a discrete approximation
of a continuous spectrum.

The number of links (per unit mass) of themth kind
existing at the current timet, arising before a timet , t,
and directed along some unit vector�l at the instant of their
creation is denoted asJm�t; t; �l�. The functionsJm�t; t; �l�
generalize the chain-distribution functions introduced by
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Yamamoto [29]. For example, the quantityJm�t;0; �l� equals
the number of initial links (per unit mass) of themth kind
with the guiding vector�l which exist at timet, whereas the
amount

2Jm

2t
�t; t; �l� dt

is the number of links which were created within the interval
[t,t 1 dt] with the guiding vector�l and exist at the current
time t.

To derive conservation laws for the functionsJm, we
introduce relative rates of breakageGm�t; t; �l� andGm0�t; �l�
as the ratios of the numbers of links annihilated per unit time
to the numbers of existing links:

Gm0�t; �l� � 2
1

Jm�t;0; �l�
2Jm

2t
�t;0; �l�;

Gm�t; t; �l� � 2
2Jm

2t
�t; t; �l�

� �21 22Jm

2t2t
�t; t; �l�:

�1�

The relative rates of reformationgm�t; �l� are defined as
the ratios of the numbers of links arising per unit time to the
numbers of links existing at the initial instant:

gm�t; �l� � 1

Jm�0;0; �l�
2Jm

2t
�t; t; �l�

����
t�t

: �2�

Integration of Eq. (1) implies that

Jm�t;0; �l� � Jm�0; 0; �l� exp 2
Zt

0
Gm0�s; �l� ds

� �
;

2Jm

2t
�t; t; �l� � 2Jm

2t
�t; t; �l�

����
t�t

exp 2
Zt

t
Gm�s; t; �l� ds

� �
:

�3�

We substitute the second expression in Eq. (3) into Eq.
(2), introduce the notation

J��l� �
XM
m�1

Jm�0;0; �l�; hm��l� � Jm�0; 0; �l�
J��l� ; �4�

and find that

Jm�t;0; �l� � J��l�hm��l� exp 2
Zt

0
Gm0�s; �l� ds

� �
;

2Jm

2t
�t; t; �l� � J��l�hm��l�gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �
:

�5�
Combining Eq. (5) with the equality

Jm�t; t; �l� � Jm�t; 0; �l�1
Zt

0

2Jm

2t
�t; t; �l� dt; �6�

we arrive at the formula

Jm�t; t; �l� � J��l�hm��l� exp 2
Zt

0
Gm0�s; �l� ds

� ��

1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �
dtg: �7�

Eq. (7) is similar to the balance laws for the numbers of
active chains derived by Yamamoto [29] and Tanaka and
Edwards [31]. The difference between our approach and
conventional theories is that Eq. (7) determines the function
Jm of two timest andt and the guiding vector�l, whereas the
standard conservation equations are written for a function of
time t and the end-to-end vector.

For a network with time-independent numbers of links,
when

Jm�t; t; �l� � Jm�0;0; �l� � J��l�hm��l�; �8�
Eq. (7) reads

exp 2
Zt

0
Gm0�s; �l� ds

� �

1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �
dt � 1: �9�

Assuming the rates of breakage and reformation to be
constants,

gm�t; �l� � go
m��l�; Gm0�t; �l� � Gm�t; t; �l� � Go

m��l�; �10�
we obtain from Eq. (9)

go
m��l�

Go
m��l�

1 1 2
go

m��l�
Go

m��l�

" #
exp 2Go

m��l�t
� � � 1:

This equality turns into identity if and only if the rates of
creation and lost coincide,

go
m��l� � Go

m��l�: �11�
Bearing in mind Eqs. (10) and (11), we present Eq. (5) as

follows:

Jm�t;0; �l� � J��l�hm��l� exp 2Go
m��l�t

� �
;

2Jm

2t
�t; t; �l� � J��l�hm��l�Go

m��l� exp 2Go
m��l��t 2 t�� �

:

�12�

3. Strain energy density of an elastoplastic link

The present study deals with relatively slow
reformation processes, when stresses in dangling links
entirely relax before the links catch new temporary
junctions. This implies that the natural (stress-free)
configuration of a link arising at timet coincides with the
actual configuration of the network at the instant of its
creation.

Our purpose now is to determine strain energy density
at the current timet for a link created at an arbitrary timet.
At the instant of its creation, the link has a small length
d(t) p 1, and it is directed along a unit guiding vector�l.
Denote by�rA�s� and �rB�s� radius vectors of the link’s ends at
an arbitrary times. One can write

�rA�t� � �rA�t�1 �u�t; t; �rA�t��; �rB�t� � �rB�t�1 �u�t; t; �rB�t��;
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where �u�t; t; �r� is the displacement vector at point�r for
transition from the actual configuration of the network at
time t to its actual configuration at timet.

At the instant of creationt, the end-to-end vector reads

d�r�t� � �rB�t�2 �rA�t� � d�t��l: �13�
At the current instantt, this vector becomes

d�r�t� � �rB�t�2 �rA�t�
� d�t��l 1 �u�t; t; �rB�t��2 �u�t; t; �rA�t��

� �
� d�t��l 1 �u�t; t; �rA�t�1 d�t��l�2 �u�t; t; �rA�t��

� �
:

�14�
Neglecting terms beyond the first order compared tod(t),

we find from Eq. (14) that

d�r�t� � d�t��l· Î 1 �7 �t� �u�t; t�� �
: �15�

Here �7 �t� is the gradient operator in the actual configuration
at timet; Î is the unit tensor, the dot stands for inner product,
and the argument�rA is omitted for simplicity.

Introducing the relative deformation gradient for transi-
tion from the actual configuration at timet to the actual
configuration at timet

�7 �t��r�t� � Î 1 �7 �t� �u�t; t�; �16�
we present Eq. (15) as follows:

d�r�t� � d�t��l· �7 �t��r�t� � �7 �t��r�t�� �Á
·d�t��l; �17�

where Á denotes transpose.
The length of a link ds(t) is calculated as

ds2�t� � d�r�t�·d�r�t�: �18�
Substitution of Eqs. (13) and (17) into Eq. (18) results

in

ds2�t� � d2�t�;
ds2�t� � d�t��l· �7 �t��r�t�· �7 �t��r�t�� �Á

·d�t��l
� �l·Ĝ�t; t�·�l ds2�t�;

�19�

where

Ĝ�t; t� � �7 �t��r�t�· �7 �t��r�t�� �Á �20�
is the relative Cauchy deformation tensor for transition
from the actual configuration at timet to the actual
configuration at timet.

The extension ratiol�t; t; �l� for a link existing at
instant t and created at timet with a guiding vector�l is
given by

l�t; t; �l� � ds�t�
ds�t� : �21�

Substitution of Eq. (19) into Eq. (21) yields

l�t; t; �l� � �l·Ĝ�t; t�·�l
h i 1

2 : �22�

An adaptive link is modeled as an elastoplastic bar
subjected to uniaxial extension. At the instant of its
creation t, the bar is in its natural state, and plastic
deformation vanishes. During the loading process, some
plastic strain is maintained. As a result, the unloaded
configuration of a link at the current timet differs
from its initial configuration. Denote by dsp�t; t; �l�
length of a link, created at timet with the guiding
vector �l, in the unloaded configuration at timet, and
by

lp�t; t; �l� �
dsp�t; t; �l�

ds�t; �l� �23�

the plastic extension ratio. It follows from Eqs. (21)
and (23) that

l�t; t; �l� � ds�t; �l�
dsp�t; t; �l�

dsp�t; t; �l�
ds�t; �l� � le�t; t; �l�lp�t; t; �l�; �24�

where

le � ds�t; �l�
dsp�t; t; �l�

�25�

is the elastic extension ratio. Combining Eqs. (22) and
(24), we arrive at the formula

le�t; t; �l� � l21
p �t; t; �l� �l·Ĝ�t; t�·�l

h i 1
2 : �26�

The mechanical energywm�t; t; �l� of an elastoplastic link
of the mth kind is assumed to be a function of the elastic
extension ratiole:

wm�t; t; �l� � wo
m le�t; t; �l�
ÿ �

: �27�

The functionwo
m�l� satisfies the conditions

wo
m�1� � 0;

dwo
m

dl
�1� � 0: �28�

The first equality in Eq. (28) means that the
potential energy vanishes when a link is in its
unloaded configuration; the second equality in Eq.
(28) implies that the stress vanishes in the unloaded
configuration. Substitution of Eq. (26) into Eq. (27) results
in

wm�t; t; �l� � wo
m

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA: �29�

It follows from Eq. (29) that the derivative of the strain
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energywm�t; t; �l� with respect to timet is calculated as

2wm

2t
�t; t; �l� � dwo

m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA 2

2t

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA

� 1

lp�t; t; �l�
dwo

m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA

� 1
2

�l·Ĝ�t; t�·�l
h i2

1
2 �l·

2Ĝ
2t
�t; t�·�l

" #(

2
�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�
2lp

2t
�t; t; �l�g: �30�

The velocity vector�v�t� is given by

�v�t� � 2�r
2t
�t�: �31�

Applying the gradient operator to Eq. (31) and changing
the order of differentiation, we obtain

2

2t
�7 �t��r�t� � �7 �t� �v�t�: �32�

Since

�7 �t� � �7 �t��r�t�· �7 �t�; �33�
Eq. (32) reads

2

2t
�7 �t��r�t� � �7 �t��r�t�· �7 �t� �v�t� � �7 �t��r�t�·L̂�t�; �34�

where

L̂�t� � �7 �t� �v�t� �35�
is the velocity gradient. We differentiate Eq. (20) with
respect to time, use Eq. (34), and find that

2Ĝ
2t
�t; t� � 2

2t
�7 �t��r�t�

� �
· �7 �t��r�t�� �Á

1 �7 �t��r�t�· 2

2t
�7 �t��r�t�

� �Á

� �7 �t��r�t�·L̂�t�· �7 �t��r�t�� �Á
1 �7 �t��r�t�·L̂Á�t�· �7 �t��r�t�� �Á

� 2 �7 �t��r�t�·D̂�t�· �7 �t��r�t�� �Á
;

�36�
where

D̂�t� � 1
2

L̂�t�1 L̂Á�t�
h i

�37�

is the rate-of-strain tensor. It follows from Eq. (36) that

�l·
2Ĝ
2t
�t; t�·�l � 2�l· �7 �t��r�t�·D̂�t�· �7 �t��r�t�� �Á

·�l

� 2F̂�t; t; �l� : D̂�t�;
�38�

where

F̂�t; t; �l� � �7 �t��r�t�� �Á
·ll· �7 �t��r�t� �39�

is the generalized relative Finger tensor,ll is the dual
product of the guiding vector�l by itself, and the colon
denotes convolution of tensors. The conventional relative
Finger tensorF̂�t; t� for transition from the actual config-
uration at timet to the actual configuration at timet is
obtained from Eq. (39), provided the tensorll is replaced
by the unit tensor̂I ,

F̂�t; t� � �7 �t��r�t�� �Á
· �7 �t��r�t�: �40�

Substituting Eq. (38) into Eq. (30), we arrive at the
formula

2wm

2t
�t; t; �l� � 1

lp�t; t; �l�
dwo

m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA

× �l·Ĝ�t; t�·�l
h i2

1
2 F̂�t; t; �l� : D̂�t�

(

2
�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�
2lp

2t
�t; t; �l�g:

�41�

4. Strain energy density of a temporary network

To simplify calculations, we confine ourselves to incom-
pressible viscoelastoplastic media. In this case, we can
neglect the energy of interaction between adaptive links
[31] and calculate the specific potential energy of adaptive
links (per unit mass) as a sum of the mechanical energies of
links existing at the current timet:

W�t� �
XM
m�1

Z
S

Jm�t;0; �l�wm�t;0; �l�
�

1
Zt

0

2Jm

2t
�t; t; �l�wm�t; t; �l� dt� dA��l�;

�42�

whereS is a unit sphere in the space of guiding vectors�l,
and dA��l� is an area element onS. Substituting Eqs. (5) and
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(29) into Eq. (42), we find that

W�t� �
XM
m�1

Z
S
hm��l� exp 2

Zt

0
Gm0�s; �l� ds

� ��

� wo
m

�l·Ĝ0�t�·�l
h i 1

2

lp0�t; �l�

0BB@
1CCA 1

Zt

0
gm�t; �l�

� exp 2
Zt

t
Gm�s; t; �l� ds

� �
wo

m

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA

� dt

)
J��l� dA��l�; �43�

where

Ĝ0�t� � �7 0 �r�t�· �7 0 �r�t�
� �Á �44�

is the Cauchy deformation tensor for transition from the
initial to the actual configuration,�7 0 is the gradient operator
in the initial configuration, andlp0�t; �l� is the plastic exten-
sion ratio at timet for initial links with the guiding vector�l.

We differentiate Eq. (43) with respect to timet, take into
account that

Ĝ�t; t� � Î ; lp�t; t; �l� � 1; �45�
use Eq. (28), and obtain

dW
dt
�t� � 2D1�t�1

XM
m�1

Z
S
hm��l�

� exp 2
Zt

0
Gm0�s; �l� ds

� �
2wm

2t
�t;0; �l�1

Zt

0
gm�t; �l�

�

� exp 2
Zt

t
Gm�s; t; �l� ds

� �
2wm

2t
�t; t; �l� dtgJ��l� dA��l�;

�46�
where

D1�t� �
XM
m�1

Z
S
hm��l� Gm0�t; �l� exp 2

Zt

0
Gm0�s; �l� ds

� ��

� wo
m

�l·Ĝ0�t�·�l
h i 1

2

lp0�t; �l�

0BB@
1CCA 1

Zt

0
gm�t; �l�Gm�t; t; �l�

� exp 2
Zt

t
Gm�s; t; �l� ds

� �

× wo
m

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA dtgJ��l� dA��l�: �47�

Eqs. (41) and (46) imply that

dW
dt
�t� � 2D1�t�2 D2�t�

1
XM
m�1

Z
S
hm��l� exp 2

Zt

0
Gm0�s; �l� ds

� ��*

× dwo
m

dl

�l·Ĝ0�t�·�l
h i 1

2

lp0�t; �l�

0BB@
1CCA F̂0�t; �l�
lp0�t; �l� �l·Ĝ0�t�·�l

h i 1
2

1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �
dt

× dwo
m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA F̂�t; t; �l�
lp�t; t; �l� �l·Ĝ�t; t�·�l

h i 1
2

)

�J��l� dA��l�i : D̂�t�; �48�
where

D2�t� �
XM
m�1

Z
S
hm��l� exp 2

Zt

0
Gm0�s; �l� ds

� ��

× dwo
m

dl

�l·Ĝ0�t�·�l
h i 1

2

lp0�t; �l�

0BB@
1CCA �l·Ĝ0�t�·�l
h i 1

2

l2
p0�t; �l�

2lp0

2t
�t; �l�

1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �

× dwo
m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA �l·Ĝ�t; t�·�l
h i 1

2

l2
p�t; t; �l�

2lp

2t
�t; t; �l�

� dt

)
J��l� dA��l� �49�

and

F̂0�t; �l� � �7 0 �r�t�
� �Á

·ll· �7 0 �r�t�: �50�
At uniaxial extension, the stressSm�t; t; �l� in an adaptive

link of the mth kind existing at timet and arising at timet
with the guiding vector�l is given by the formula [42]

Sm�t; t; �l� � le�t; t; �l� dwo
m

dl
�le�t; t; �l��: �51�

It follows from Eqs. (26) and (51) that

dwo
m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA � lp�t; t; �l�

�l·Ĝ�t; t�·�l
h i 1

2

Sm�t; t; �l�: �52�
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Substitution of Eq. (52) into Eq. (49) results in

D2�t� �
Z
S

1

lp0�t; �l�
2lp0

2t
�t; �l�

(

×
XM
m�1

hm��l� exp 2
Zt

0
Gm0�s; �l� ds

� �
Sm0�t; �l�

1
Zt

0

1

lp�t; t; �l�
2lp

2t
�t; t; �l�

×
XM
m�1

hm��l�gm�t; �l� exp 2
Zt

t
Gm�s; t; �l� ds

� �
Sm�t; t; �l� dt

)

�J��l� dA��l�; �53�
where Sm0�t; �l� is the stress at the current timet in
an initial link of the mth kind with the guiding
vector �l.

To transform Eq. (53), we introduce the plastic Hencky
strain

1p�t; t; �l� � ln lp�t; t; �l� �54�
and the resulting stresses

S0�t; �l� �
XM
m�1

hm��l� exp 2
Zt

0
Gm0�s; �l� ds

� �
Sm0�t; �l�;

S�t; t; �l� �
XM
m�1

hm��l�gm�t; �l�

� exp 2
Zt

t
Gm�s; t; �l� ds

� �
Sm�t; t; �l�:

�55�

In the new notation, Eq. (53) is written as follows:

D2�t� �
Z
S

21p0

2t
�t; �l�S0�t; �l�

�

1
Zt

0

21p

2t
�t; t; �l�S�t; t; �l�dt

�
J��l� dA��l�:

�56�

5. Thermodynamic potentials and constitutive equations

The first law of thermodynamics [43] reads

dF
dt
� 1

r
ŝ : D̂ 2 �7 ·�q
ÿ �

1 r : �57�

HereF is the specific internal energy per unit mass,�q
is the heat flux vector,r is the heat supply per unit mass,
r is a constant mass density, andŝ is the Cauchy stress
tensor.

We present the stress tensorŝ as a sum of its spherical
and deviatoric components,

ŝ � 2pÎ 1 ŝ; �58�

wherep is pressure, substitute Eq. (58) into Eq. (57), use the
incompressibility condition

I1�D̂� � 0; �59�
and obtain

dF
dt
� 1

r
ŝ : D̂ 2 �7 ·�q
ÿ �

1 r : �60�

The Clausius–Duhem inequality [43] implies that

r
dQ
dt
� r

dS
dt

1 �7 ·
�q
Q

� �
2

rr
Q

$ 0; �61�

where S is the specific entropy (per unit mass),Q is the
specific entropy production, andQ is the absolute tempera-
ture. Bearing in mind that

�7 ·
�q
Q

� �
� 1

Q
�7 ·�q 2

1
Q2 �q· �7Q;

and excluding the term�7 ·�q from Eqs. (60) and (61), we
arrive at the formula

Q
dQ
dt
� Q

dS
dt

2
dF
dt

1
1
r

ŝ : D̂ 2
1
Q

�q· �7Q

� �
$ 0: �62�

Taking into account that

F � C 1 SQ; �63�
whereC is the specific free (Helmholtz) energy, we present
Eq. (62) in the form

Q
dQ
dt
� 2S

dQ
dt

2
dC
dt

1
1
r

ŝ : D̂ 2
1
Q

�q· �7Q

� �
$ 0: �64�

We accept the following expressions for the specific free
energy and the specific entropy:

C � Co 1 �c 2 So��Q 2 Qo�2 cQ ln
Q

Qo 1 W; �65�

S� So 1 c ln
Q

Qo : �66�

Here Co and So are the specific free energy and the
specific entropy in the initial (stress-free) configuration
at the reference temperatureQo, and c is the specific
heat capacity (per unit mass) of adaptive links. Confining
ourselves to processes with weakly varying temperature
Q, we suppose that the parametersCo, So, and c are
constants.

Substituting Eqs. (48), (65) and (66) into Eq. (64), we find
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that

rQ�t� dQ
dt
�t� � r�D1�t�1 D2�t��2

1
Q�t� �q�t�·

�7 �t�Q�t�

1 D̂�t� : ŝ�t�2 r
XM
m�1

Z
S
hm��l� exp 2

Zt

0
Gm0�s; �l� ds

� ��*

× dwo
m

dl

�l·Ĝ0�t�·�l
h i 1

2

lp0�t; �l�

0BB@
1CCA F̂0�t; �l�
lp0�t; �l� �l·Ĝ0�t�·�l

h i 1
2

1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �
dt

× dwo
m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA F̂�t; t; �l�
lp�t; t; �l� �l·Ĝ�t; t�·�l

h i 1
2

)

�J��l� dA��l�i $ 0: �67�
Following common practice, we equate terms in the angle

brackets to zero, use Eq. (58), and obtain the constitutive
equation

ŝ�t� � 2p�t�Î 1 r
XM
m�1

Z
S
hm��l� exp 2

Zt

0
Gm0�s; �l� ds

� ��

× dwo
m

dl

�l·Ĝ0�t�·�l
h i 1

2

lp0�t; �l�

0BB@
1CCA F̂0�t; �l�
lp0�t; �l� �l·Ĝ0�t�·�l

h i 1
2

1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �
dt

× dwo
m

dl

�l·Ĝ�t; t�·�l
h i 1

2

lp�t; t; �l�

0BB@
1CCA F̂�t; t; �l�
lp�t; t; �l� �l·Ĝ�t; t�·�l

h i 1
2

)

�J��l� dA��l�: �68�
Combining Eqs. (67) and (68), we arrive at the formula

Q�t� dQ
dt
�t� � D1�t�1 D2�t�2

1
rQ�t� �q�t�·

�7 �t�Q�t� $ 0:

�69�
Eq. (47) implies that the functionalD1(t) is nonnegative,

since the concentrationshm, the strain energieswo
m, and the

rates of reformationgm are nonnegative. The third term on
the left-hand side of Eq. (69) is nonnegative, provided that
the heat flux vector�q obeys the Fourier law

�q�t� � 2k �7 �t�Q�t� �70�
with a nonnegative thermal diffusivityk. As a result, we find
that the Clausius–Duhem inequality Eq. (69) holds if the

functionalD2(t) is nonnegative. It follows from Eq. (56) that
this assumption is valid if the rate of plastic strain satisfies
the equation

21p

2t
�t; t; �l� �H S�t; t; �l�ÿ �

; �71�

whereH is an arbitrary odd function.
Eqs. (68), (70) and (71) provide constitutive equations for

incompressible viscoelastoplastic media derived within the
concept of temporary polymeric networks. Eq. (71) may be
treated as the simplest version of constitutive relations for
the rate of plastic strain which are compatible with the
dissipation inequality. To generalize this relationship, one
can assume that the functionH depends also on the plastic
Hencky strain1p(t,t) and any objective measure of deforma-
tions. As examples, the following equations are suggested:

21p

2t
�t; t; �l� �H S�t; t; �l�; 1p�t; t�

� �
;

21p

2t
�t; t; �l� �H S�t; t; �l�; 1p�t; t; �l�; F̂�t; t�

� �
;

21p

2t
�t; t; �l� �H S�t; t; �l�; 1p�t; t; �l�; F̂�t; t; �l�

� �
:

�72�

The only restriction imposed on the functionH is that it
should be positive and odd in the first argumentS.

Eq. (68) is a new stress–strain relation for viscoelasto-
plastic polymer materials. In the limiting case of purely
viscoelastic deformations, when

lp0�t; �l� � 1; lp�t; t; �l� � 1; �73�
Eq. (68) turns into the constitutive equation for nonlinear
viscoelastic media [44].

Substituting Eq. (52) into Eq. (68), we find that

ŝ�t� � 2p�t�Î 1 r
XM
m�1

Z
S
hm��l� exp 2

Zt

0
Gm0�s; �l� ds

� ��

� Sm0�t; �l�
�l·Ĝ0�t�·�l

F̂0�t; �l�1
Zt

0
gm�t; �l� exp 2

Zt

t
Gm�s; t; �l� ds

� �

� Sm�t; t; �l�
�l·Ĝ�t; t�·�l F̂�t; t;

�l� dtgJ��l� dA��l�: �74�

It follows from Eqs. (55) and (74) that

ŝ�t� � 2p�t�Î 1 r
Z
S

S0�t; �l�
�l·Ĝ0�t�·�l

F̂0�t; �l�
"

1
Zt

0

S�t; t; �l�
�l·Ĝ�t; t�·�l F̂�t; t;

�l� dt
#
J��l� dA��l�: �75�

For an isotropic network with

J��l� � J; �76�
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Eq. (75) reads

ŝ�t� � 2p�t�Î 1 rJ
Z
S

S0�t; �l�
�l·Ĝ0�t�·�l

F̂0�t; �l� dA��l�
(

1
Zt

0

Z
S

S�t; t; �l�
�l·Ĝ�t; t�·�l F̂�t; t;

�l� dA��l�
" #

dt

)
: �77�

Eq. (77) is a new constitutive relation for a viscoelasto-
plastic medium at finite strains.

6. Constitutive equations for linear isotropic media

In this section we confine ourselves to small deformations
of an isotropic polymer from the initial configuration to the
actual configuration, when nonlinear terms may be
neglected in the expressions for the strain tensors, and mate-
rial functions may be replaced by their linear approxima-
tions.

Substitution of Eq. (16) into Eqs. (20) and (40) implies
that

F̂�t; t� � Ĝ�t; t� � Î 1 2ê�t; t�; �78�
where

ê�t; t� � 1
2

�7 �t� �u�t; t�1 �7 �t� �u�t; t�ÿ �Áh i
�79�

is the infinitesimal strain tensor for transition from the actual
configuration at timet to the actual configuration at timet.

Combining Eqs. (22) and (78) and bearing in mind the
equality

�l·�l � 1; �80�
we obtain

l�t; t; �l� � 1 1 �l·ê�t; t�·�l: �81�
The infinitesimal plastic strain is given by

ep�t; t; �l� � lp�t; t; �l�2 1: �82�
It follows from Eqs. (26), (81) and (82) that

le�t; t; �l� � 1 1 �l·ê�t; t�·�l 2 ep�t; t; �l�: �83�
This equality together with Eq. (28) implies that with the

required level of accuracy,

dwo
m

dl
le�t; t; �l�
ÿ � � dwo

m

dl
�1�1

d2wo
m

dl2 �1�

� �l·ê�t; t�·�l 2 ep�t; t; �l�
h i

� mm
�l·ê�t; t�·�l 2 ep�t; t; �l�
h i

; �84�
where

mm � d2wo
m

dl2 �1�: �85�

Substitution of Eqs. (83) and (84) into Eq. (51) results in

Sm�t; t; �l� � mm
�l·ê�t; t�·�l 2 ep�t; t; �l�
h i

: �86�
For isotropic materials, the rates of breakage and refor-

mation, as well as the concentrationshm of various kinds of
links, are independent of�l:

Gm0�t; �l� � Gm0�t�; Gm�t; t; �l� � Gm�t; t�:
Combining Eqs. (55) and (86), we find that

S�t; t; �l� � K�t; t� �l·ê�t; t�·�l 2 ep�t; t; �l�
h i

; �87�
where

K�t; t� �
XM
m�1

hmmmgm�t� exp 2
Zt

t
Gm�s; t� ds

� �
: �88�

At small strains, the Hencky plastic strain1p coincides
with the infinitesimal plastic strainep. Substituting Eq. (87)
into the constitutive Eq. (71) and using the equalityH(0)�
0 that holds for any odd function, we obtain

2ep

2t
�t; t; �l� � H0K�t; t� �l·ê�t; t�·�l 2 ep�t; t; �l�

h i
; �89�

where

H0 � dH
dS
�0�: �90�

The initial condition for differential Eq. (89) reads

ep�t; t; �l� � 0: �91�
We seek a solution of Eqs. (89) and (91) in the form

ep�t; t; �l� � �l·êp�t; t�·�l; �92�
where êp�t; t� is a tensor-valued function to be found.
Substitution of Eq. (92) into Eqs. (89) and (91) results in

2êp

2t
�t; t� � H0K�t; t��ê�t; t�2 êp�t; t��; êp�t; t� � 0:

�93�
For an incompressible medium, the first invariant of the

infinitesimal strain tensor̂e vanishes,

I1 ê�t; t�� � � 0: �94�
It follows from Eqs. (93) and (94) that

I1 êp�t; t�
� �

� 0; �95�
which, together with Eq. (94), implies that

I1 1̂�t; t�� � � 0; �96�
where

1̂�t; t� � ê�t; t�2 êp�t; t�: �97�
Substitution of Eqs. (92) and (97) into Eq. (87) yields

S�t; t; �l� � K�t; t��l·1̂�t; t�·�l: �98�
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It follows from Eqs. (16), (39), (78) and (98) that with the
required level of accuracy,

S�t; t; �l�
�l·Ĝ�t; t�·�l F̂�t; t;

�l� � K�t; t� �l·1̂�t; t�·�l� �
ll : �99�

We introduce Cartesian coordinates {xi} with unit vectors
�ei directed along the eigenvectors of the symmetrical tensor
1̂�t; t�. The position of the unit vector�l with respect to the
Cartesian coordinate frame is determined by the spherical
anglesq andw:

�l � cosq �e1 1 sinq cosw �e2 1 sinw �e3

ÿ �
: �100�

The tensorll is presented in the matrix form

ll �

cos2 q sinq cosq cosw sinq cosq sinw

sinq cosq cosw sin2 q cos2 w sin2 q sinw cosw

sinq cosq sinw sin2 q sinw cosw sin2 q sin2 w

26664
37775:

�101�
The tensor1̂ reads

1̂ � 11 �e1 �e1 1 12 �e2 �e2 1 13 �e3 �e3; �102�
where1n is the nth eigenvalue of1̂ . It follows from Eqs.
(100) and (102) that

�l·1̂·�l � 11cos2 q 1 12cos2 w 1 13sin2 w
� �

sin2 q: �103�
Substituting Eqs. (101) and (103) into Eq. (99) and bear-

ing in mind that

dA��l� � sinq dq dw; �104�
we arrive at the formula

where arguments are omitted for simplicity. Calculating the
integrals, we obtain

Z
S

SF̂
�l·Ĝ·�l

dA� 4p
15

K

�
311 1 12 1 13 0 0

0 11 1 312 1 13 0

0 0 11 1 12 1 313

2664
3775:

This equality can be written asZ
S

S�t; t; �l�
�l·Ĝ�t; t�·�l F̂�t; t;

�l� dA��l�

� 4p
15

K�t; t� I1 1̂�t; t�� �1 21̂�t; t��:� �106�

Eqs. (96), (97) and (106) imply thatZ
S

S�t; t; �l�
�l·Ĝ�t; t�·�l F̂�t; t;

�l� dA��l� � 8p
15

K�t; t�1̂�t; t�

� 8p
15

K�t; t��ê�t; t�2 êp�t; t��: �107�

By analogy with Eq. (107), we can writeZ
S

S0�t; �l�
�l·Ĝ0�t�·�l

F̂0�t; �l� dA��l� � 8p
15

K0�t��ê0�t�2 êp0�t��:
�108�

Here

K0�t� �
XM
m�1

hmmm exp 2
Zt

0
Gm0�s� ds

� �
; �109�

ê0�t� is the infinitesimal strain tensor for transition from the
initial configuration to the actual configuration at timet, and
the tensor̂ep0�t� obeys the ordinary differential equation [cf.
Eq. (93)]

dêp0

dt
�t� � H0K0�t��ê0�t�2 êp0�t��; êp0�0� � 0: �110�

Substituting Eqs. (107) and (108) into the constitutive Eq.
(77), we find that

ŝ�t� � 2p�t�Î 1
8p
15

rJ K0�t��ê0�t�2 êp0�t��
n

1
Zt

0
K�t; t��ê�t; t�2 êp�t; t�� dtg: �111�

Without loss of generality, we can assume that the
mechanical energies coincide for adaptive links of various
kinds, which leads to the formula

m1 �…� mM � m0: �112�
The infinitesimal strain tensor̂e�t; t� for transition from
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Z
S

SF̂
�l·Ĝ·�l

dA� K
Zp

0
sinq dq

Z2p

0
11 cos2 q 1 12 cos2 w 1 13 sin2 w

� �
sin2 q

h i

×
cos2 q sinq cosq cosw sinq cosq sinw

sinq cosq cosw sin2 q cos2 w sin2 q sinw cosw

sinq cosq sinw sin2 q sinw cosw sin2 q sin2 w

26664
37775 dw; �105�



the actual configuration at timet to the actual configuration
at time t is calculated as

ê�t; t� � ê0�t�2 ê0�t�: �113�

Substitution of Eqs. (112) and (113) into Eq. (111)
implies the linear constitutive equation in viscoelastoplasti-
city of polymers:

ŝ�t� � 2p�t�Î 1 2m Kp
0�t��ê0�t�2 êp0�t��

n
1
Zt

0
Kp�t; t��ê0�t�2 ê0�t�2 êp�t; t�� dtg; �114�

where

Kp
0�t� �

XM
m�1

hm exp 2
Zt

0
Gm0�s� ds

� �
;

Kp�t; t� �
XM
m�1

hmgm�t� exp 2
Zt

t
Gm�s; t� ds

� �
;

m � 4p
15

rm0J:

�115�

It follows from Eqs. (93), (110) and (113) that the infini-
tesimal plastic strain tensorŝep0�t� and êp�t; t� satisfy the
differential equations

dêp0

dt
�t� � HKp

0�t��e0�t�2 êp0�t��; êp0�0� � 0;

2êp

2t
�t; t� � HKp�t; t��e0�t�2 ê0�t�2 êp�t; t��; êp�t; t� � 0

�116�
with

H � m0H0: �117�

7. Comparison with experimental data

Eqs. (114) and (116) determine the response of a linear,
isotropic, incompressible, viscoelastoplastic medium under
an arbitrary loading. For relaxation tests with

ê0�t� �
0; t , 0;

ê0; t $ 0;

(
�118�

these relationships can be simplified. Substitution of Eq.
(118) into the second equality in Eq. (116) implies that for
any 0# t # t,

êp�t; t� � 0: �119�
The tensor function

Ê�t� � ê0�t�2 êp0�t� � ê0 2 êp0�t� �120�
satisfies the differential equation

dÊ
dt
�t� � 2HKp

0�t�Ê�t�; Ê�0� � ê0: �121�
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Fig. 1. The tensile relaxation modulusE (GPa) versus timet (s) for poly-
carbonate. Circles: experimental data obtained by Litt and Torp [45] in
relaxation tests at 678C. Filled circles:e � 0.0193; unfilled circles:e �
0.0331. Solid lines: their approximation by the linear functionE � c1 1

c2 log t with c1 � 2.0128,c2 � 2 0.0404 (curve 1) andc1 � 1.7447,c2 �
2 0.0555 (curve 2).

Fig. 2. The tensile relaxation modulusE (GPa) versus timet (s) for poly-
carbonate. Circles: treatment of experimental data obtained by Litt and
Torp [45] in tensile relaxation test at 678C. Filled circles:e � 0.0193;
unfilled circles:e � 0.0331. Solid line: approximation of the relaxation
master-curve (reduced to the reference strainer � 0.0193) withM � 8,
E0 � 1.9815 GPa, and the adjustable parametersGm* and hm listed in
Table 1.



Resolving Eq. (121) with respect tôE�t�, we find that

Ê�t� � ê0 exp 2H
Zt

0
Kp

0�t� dt
� �

: �122�

Substitution of Eqs. (118), (120) and (122) into Eq. (114)
implies that

ŝ�t� � 2p�t�Î 1 2mê0Kp
0�t� exp 2H

Zt

0
Kp

0�t� dt
� �

: �123�

For definiteness, we analyze uniaxial extension of a
viscoelastoplastic bar. We introduce Cartesian coordinates
{ xi}, where the axisx1 coincides with the longitudinal axis
of the specimen. According to the incompressibility condi-
tion, the strain tensor̂e0 is given by

ê0 � e0 �e1 �e1 2
1
2
e0 �e2 �e2 1 �e3 �e3

ÿ �
; �124�

wheree0 is the longitudinal strain, and�ei are unit vectors of
the coordinate frame. Substitution of Eq. (124) into Eq.
(123) implies that

ŝ�t� � s1�t� �e1 �e1 1 s2�t� �e2 �e2 1 �e3 �e3

ÿ �
; �125�
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Table 1
Adjustable parametersGmp (s21) andhm for polycarbonate at 678C

Gmp hm

0.020 000 000 000 0000 0.0293
0.000 400 000 000 0000 0.0391
0.000 008 000 000 0000 0.0313
0.000 000 160 000 0000 0.0307
0.000 000 003 200 0000 0.0496
0.000 000 000 064 0000 0.0548
0.000 000 000 001 2800 0.0584
0.000 000 000 000 0256 0.7068

Fig. 3. The relaxation modulusE (GPa) versus timet (s) for polycarbonate.
Circles: experimental data obtained by Litt and Torp [45] in tensile relaxa-
tion test with the straine0� 0.0193 at 678C. Solid lines: predictions of the
model. Curve 1: viscoelastic material; curve 2: viscoelastoplastic material
with H(e0) � 1.5 × 1026 s21.

Fig. 4. The relaxation modulusE (GPa) versus timet (s) for polycarbonate.
Circles: experimental data obtained by Litt and Torp [45] in tensile relaxa-
tion test with the straine0 � 0.0331 at 678C. Solid lines: predictions of the
model. Curve 1: viscoelastic material; curve 2: viscoelastoplastic material
with H(e0) � 4.0 × 1026 s21.

Fig. 5. The tensile relaxation modulusE (GPa) versus timet (s) for rubber-
toughened poly(methyl methacrylate) at 708C. Circles: treatment of experi-
mental data obtained by Mariani et al. [49]. Solid line: approximation of the
master-curve (reduced toer � 0.001) by Eq. (128) withE0 � 1.2624 GPa,
M � 11, and the adjustable parametersGm* andhm listed in Table 2.



where

s1�t� � 2p�t�1 2me0Kp
0�t� exp 2H

Zt

0
Kp

0�t� dt
� �

;

s2�t� � 2p�t�2 me0Kp
0�t� exp 2H

Zt

0
Kp

0�t� dt
� �

:

�126�

Eq. (126) and the boundary condition on the lateral
surface of the bar

s2�t� � 0

imply that the longitudinal stress is calculated as

s1�t� � E0e0Kp
0�t� exp 2H

Zt

0
Kp

0�t� dt
� �

; �127�

where

E0 � 3m

is Young’s modulus. For comparison, we provide the
formula for the response of a linear viscoelastic medium
(with H � 0)

s1�t� � E0e0Kp
0�t�: �128�

It follows from Eqs. (127) and (128) that the material
plasticity leads to an exponential decrease in the relaxation
moduli; the rate of the decrease is determined by the rate of
plastic flowH.

Eq. (127) predicts the longitudinal stress in a linear
viscoelastoplastic material. However, it also remains valid
for nonlinear viscoelastoplastic media at small strains,
where the rates of breakage and reformation for adaptive
links gm, Gm0, Gm, as well as the rate of plastic flowH,
depend on strains.

Experimental data for glassy polymers obtained in stan-
dard relaxation tests at different strain levels (below the
yield point, when the effect of plasticity can be neglected)
show that relaxation curves plotted in double logarithmic
coordinates can be superposed by shifts along the time-axis
(the time–strain superposition principle). This phenomenon
is conventionally explained by the presence of some internal
(material) clock governing reformation of adaptive links.
The time–strain superposition principle is equivalent to
the assumption that the rates of breakage are functions of
the strain tensor:

Go
mje�e0

� Go
mp

a�e0� ; �129�

whereGo
mp is the rate of breakage for themth kind of adap-

tive links at the reference strainer anda is the relative shift
factor.

Unlike nonlinearviscoelasticmedia, viscoelastoplastic
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Table 2
Adjustable parametersGmp (s21) andhm for rubber-toughened poly(methyl
methacrylate) at 708C

Gmp hm

10.000 000 000 0.0166
1.000 000 000 0.0763
0.100 000 000 0.0235
0.010 000 000 0.0968
0.001 000 000 0.0988
0.000 100 000 0.1078
0.000 010 000 0.1310
0.000 001 000 0.1074
0.000 000 100 0.1496
0.000 000 010 0.0243
0.000 000 001 0.1678

Fig. 6. The shift factora versus the longitudinal straine0 for rubber-toughened poly(methyl methacrylate). Circles: treatment of experimental data obtained by
Mariani et al. [49]; Unfilled circles:Q � 708C; filled circles:Q� 908C. Solid lines: approximations of experimental data by Eq. (130) withc� 273.56 (curve
1) andc � 167.02 (curve 2).



materials do not permit relaxation master-curves to be
constructed by shifts of short-term relaxation curves. As
an example, we refer to experimental data for polycarbonate
depicted in Fig. 1. For a detailed description of the experi-
mental procedure, see Ref. [45].

Litt and Torp [45] have found that in tensile relaxation
tests at various temperatures within the range from2 63 to
268C, the stress linearly decreases with the growth of the
logarithm of time over five decades of time. This behavior is
typical of polycarbonate, which is confirmed by indepen-
dent data provided by other sources [46].

At elevated temperatures (e.g. 678C), the decrease in the
longitudinal stress is linear up to a certain point (pointsA1

andA2 in Fig. 1), and crucially accelerates after this point.

The material softening exhibited in Fig. 1 is explained by
the influence of material plasticity. This is in good agree-
ment with observations carried out after static tests, which
reveal considerable crazing of specimens [45].

Assuming that the effect of plasticity is insignificant at the
initial intervals of measurements (that isH may be neglected
before pointsAi) and accepting the time–strain superposi-
tion principle Eq. (129), we find from Eq. (127) that the
initial parts of the relaxation curves can be superposed by
horizontal shifts. This hypothesis is confirmed fairly well by
data plotted in Fig. 2, where experimental data obtained at
e0� 0.00331 are shifted along the time-axis by 6.95 decades
to construct a master-curve reduced to the reference strain
er � 0.00193. The material parametersGm* and hm are
collected in Table 1. The numberM of relaxation times
that approximate a continuous relaxation spectrum, as
well as the relaxation ratesGm* reciprocal to the relaxation
times are chosen to ensure an acceptable level of accuracy in
fitting experimental data. Referring to Christensen [47], we
chooseM to coincide with the number of decades in a region
on the time axis where experimental data are located. For a
discussion of this issue, see also Ref. [48].

Given M, hm, and Gm*, the valuesH(e0) are found to
ensure the best fit of relaxation curves in the entire interval
of measurements. Experimental data together with their
approximations by the viscoelastic model (curves 1) and
viscoelastoplastic model (curves 2) are plotted in Figs. 3
and 4. These figures show that the material plasticity signifi-
cantly affects the relaxation curves, and its influence can be
adequately predicted by quasi-linear constitutive Eqs. (114)
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Table 3
Adjustable parametersGmp (s21) andhm for rubber-toughened poly(methyl
methacrylate) at 908C

Gmp hm

Fig. 7 Fig. 8

10.000 000 0.1095 0.1077
1.000 000 0.0781 0.0869
0.100 000 0.1499 0.1112
0.010 000 0.0662 0.2055
0.001 000 0.2744 0.2304
0.000 100 0.1860 0.1436
0.000 010 0.0916 0.1148
0.000 001 0.0443 0.0000

Fig. 7. The tensile relaxation modulusE (GPa) versus timet (s) for rubber-
toughened poly(methyl methacrylate) at 908C. Symbols: experimental data
obtained by Mariani et al. [49]:W e0� 0.001;X e0� 0.003; *e0� 0.005;S
e0� 0.0075;w e0� 0.015;K e0� 0.02;A e0� 0.025;' e0� 0.03. Solid
line: approximation of the master-curve (reduced toer � 0.001) by Eq.
(128) with E0 � 1.0552 GPa,M � 8, and the adjustable parametersGm*

andhm listed in Table 3.

Fig. 8. The tensile relaxation modulusE (GPa) versus timet (s) for rubber-
toughened poly(methyl methacrylate) at 908C. Circles: treatment of experi-
mental data obtained by Mariani et al. [49]. Solid line: approximation of the
master-curve (reduced toer � 0.001) by Eq. (128) withE0 � 1.0550 GPa,
M � 7, and the adjustable parametersGm* andhm listed in Table 3.



and (116) with strain-dependent rates of breakage, reforma-
tion, and plastic flow.

To demonstrate that the constitutive equations can
correctly describe experimental data for other polymers as
well, we study relaxation curves for rubber-toughened
poly(methyl methacrylate) measured at 70 and 908C. For a

detailed description of the experimental procedure, see Ref.
[49].

The relaxation curves obtained at 708C and plotted in
double logarithmic coordinates can be superposed by hori-
zontal shifts with a high level of accuracy. Fig. 5 presents
experimental data shifted along the time axis and an approx-
imation of the master-curve (reduced to the reference strain
er � 0.001) by Eq. (128), where the functionKp

0�t� is given
by Eqs. (115) and (129) with the adjustable parametersGm*

andhm collected in Table 2. The shift factora is plotted
versus the longitudinal straine0 in Fig. 6, where experimen-
tal data are approximated by the dependence

log a� c�e0 2 er �; log� log10: �130�
Results depicted in Figs. 5 and 6 imply that plastic effects

may be neglected in specimens loaded at 708C.
With an increase in temperature, the influence of material

plasticity grows. This assertion is confirmed by experimen-
tal data obtained for poly(methyl methacrylate) at 908C. An
attempt to construct a master-curve by horizontal shifts of
relaxation curves leads to significant deviations from the
approximation of the tensile relaxation modulusE (adjust-
able parametersGm* andhm are collected in Table 3) (Fig. 7).
Ascribing these discrepancies to the effect of plasticity, we
find that only initial parts of the relaxation curves (which
correspond to very small plastic strains) are superposable by
horizontal shifts. A master-curve constructed by using ‘trun-
cated’ relaxation curves is plotted in Fig. 8, which demon-
strates excellent fit of experimental data.

The corresponding shift factora is depicted in Fig. 6,
which shows that Eq. (130) correctly predicts observations.
This supports our model, since Eq. (130) is conventionally
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Fig. 9. The tensile relaxation modulusE (GPa) versus timet (s) for rubber-toughened poly(methyl methacrylate) at 908C. Circles: experimental data obtained
by Mariani et al. [49] ate0� 0.015. Solid lines: results of numerical simulation. Curve 1: the viscoelastic model; curve 2: the viscoelastoplastic model withH�
0.04 s21.

Fig. 10. The tensile relaxation modulusE (GPa) versus timet (s) for
rubber-toughened poly(methyl methacrylate) at 908C. Circles: experimen-
tal data obtained by Mariani et al. [49] ate0 � 0.02. Solid lines: results of
numerical simulation. Curve 1: the viscoelastic model; curve 2: the visco-
elastoplastic model withH � 0.10 s21.



employed to fit shift factors for nonlinear viscoelastic
media.

To ensure an acceptable fit of the entire relaxation curves,
we choose the rate of plastic strainsH for any relaxation test
with e0 . 0.01. Results of numerical simulation are plotted
together with experimental data in Figs. 9–12. These figures

demonstrate fair agreement between observations and
predictions of the model.

The dependenceH(e0) is approximated by the power law

H � Aea0 �131�

with two adjustable parametersA anda. It follows from Eq.
(131) that the logarithm of the plastic rate of strain is a linear
function of the logarithm of the longitudinal strain

log H � a log e0 1 log A: �132�

Eq. (132) is fairly well confirmed by experimental data
plotted in Fig. 13.

Figs. 5–13 show that the model may be applied not only
to homogeneous materials, but also to polymeric compo-
sites. The conclusions drawn by fitting experimental data
are in qualitative agreement with observations for other
amorphous polymers, see for example, recent data for an
epoxy resin in Ref. [50]. This may be explained as follows.
Measurements by Mariani et al. [49] refer to a composite
with relatively large rubber particles (the ratio of the aver-
age radius of a particle to the average radius of a cell is
about 0.6), which means that the inhomogeneity in stress
distribution across the cell (caused by the stress concentra-
tion at the interface) is rather weak and does not signifi-
cantly affect relaxation times of the matrix. At small
strains, when no detachment occurs at the interfaces, this
allows the model to be employed in the study of particulate
composites, where inclusions are treated as clusters of
persistent links (analogous to chemical crosslinks in an
amorphous polymer).
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Fig. 11. The tensile relaxation modulusE (GPa) versus timet (s) for
rubber-toughened poly(methyl methacrylate) at 908C. Circles: experimen-
tal data obtained by Mariani et al. [49] ate0� 0.025. Solid lines: results of
numerical simulation. Curve 1: the viscoelastic model; curve 2: the visco-
elastoplastic model withH � 0.31 s21.

Fig. 12. The tensile relaxation modulusE (GPa) versus timet (s) for
rubber-toughened poly(methyl methacrylate) at 908C. Circles: experimen-
tal data obtained by Mariani et al. [49] ate0 � 0.03. Solid lines: results of
numerical simulation. Curve 1: the viscoelastic model; curve 2: the visco-
elastoplastic model withH � 0.90 s21.

Fig. 13. The rate of plastic strainsH versus the longitudinal straine0 for
rubber-toughened poly(methyl methacrylate). Circles: treatment of experi-
mental data obtained by Mariani et al. [49]. Solid line: approximation of
experimental data by Eq. (132) with logA � 6.7147 anda � 4.4844.



8. Concluding remarks

New constitutive equations have been derived for the
viscoelastoplastic response of glassy polymers. The model
is based on the concept of a temporary network, where
adaptive links are treated as elastoplastic elements.

Explicit expressions are proposed for thermodynamic
potentials of a transient network at finite strains. Constitu-
tive equations are developed using the laws of thermody-
namics. Nonlinear stress–strain relations with large
deformations are simplified at small strains. Quasi-linear
constitutive equations are derived for viscoelastoplastic
polymers with strain-dependent rates of breakage, reforma-
tion, and plastic flow.

As examples, results of tensile relaxation tests are
analyzed for polycarbonate at 678C and rubber-toughened
poly(methyl methacrylate) at 70 and 908C. Adjustable para-
meters in the constitutive relations are found by fitting
experimental data. It is demonstrated that the quasi-linear
model correctly describes available experimental data and
may be used to study stresses built up in polymeric articles.
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